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1 INTRODUCTION 

Most social systems face the problem of how to organize their members for particular 
goals. In economics, the concept can be related at least as early as Adam Smith. He 
emphasized the question of how societies manage to align the diverging interests of their 
members. The market provides a solution by allowing each member one of them to pursue 
his own interest without affecting the interests of others. But this problem is seems like a 
ubiquitous issue in most social sciences. As an example, voting mechanisms have the 
objective of organizing several divergent interests and coming up with one single decision, 
such as electing a single candidate out of a pool. In these cases, a centralized voting 
mechanism solves the problem of organization. Some political systems such as communism 
try to solve the problem by imposing rules from a centralized position to the rest of the 
system. 

The fact that the problem is solved doesn’t mean that modern science understands it. For 
Smith, although the market solved the problem, it wasn’t clear the exact mechanism by 
which this happened, and hence he used the term “invisible hand;” for some invisible reason, 
the market works. For Hayek, a market price helped solve this question by gathering local 
information and condensing it into a common signal that can be available to the whole 
system. However, how organization happens is not addressed. In traditional neoclassical 
economic thinking and textbooks, supply and demand determines prices and quantities, and 
the equilibrium they form is a way in which the market is organized. Since the critique to the 
Walrasian auctioneer until now, how exactly that organization happens is not clear. 

To narrow the problem, the focus of this exercise is to understand better how this 
organization occurs in a decentralized system, particularly one without the use of any 
common signal such as a price. We are interested in modeling explicitly the process in which 
agents make their decisions at the individual level, and evaluating what rules of behavior 
lead to organization at the aggregate level. The key aspect in our modeling approach is that 
agents don’t have any aggregate information about the whole system, and even more, we 
don’t endow them with any a priori preference for a particular kind of organization beyond 
simple two-agent pairs.  

For exploring this problem, the model presented here focuses on the decision process of 
finding a mate. We focus on two dimensions of the model: one is the individual problem of 
each agent finding a partner, and the other is the aggregate patterns that are observed from 
these interactions. For this, we explore different simple behavioral rules at the individual 
level, and ask whether the interaction of agents, explicitly modeled via computational 
experiments, can generate an organized system. To measure organization we consider the 
extent to which the model generates assortative mating: this is an empirical fact in the fields 
of psychology and economics that humans usually marry partners with similar 
characteristics such as attractiveness or income. 

The interesting part of our model is that there is no exogenous mechanism embedded in 
the agents that would a priori determine a preference for mating with similar agents, nor 
common knowledge about the system as a whole. We model simple agents with limited 
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information about the rest of agents with whom they can mate, and by defining explicit rules 
of local interaction, we ask whether such a system can organize itself by replicating patterns 
of assortative mating. Our results show that the model can. Since we explicitly model the 
interaction of agents, the model presents a way in which the organization problem is solved 
without the need for any centralized mechanism. 

2 THE MODEL 

Our approach represents agents whose objective is to “match” or “marry” with one other 
agent. The model is initialized with 100 agents who constitute the dating “pool.” Agents can 
only “meet” and select partners in the pool. The pool changes in each discrete time step, and 
once two agents marry they are removed from it. All agents are of the same single, undefined 
sex, meaning that they can marry any other agent in the pool. Agents are heterogeneous in 
“hotness” levels (fitness measure); they are all randomly endowed with a hotness level that 
ranges from 0 to 10, drawn from a uniform distribution. An agent’s hotness can never be 
changed. 

In each discrete time step, each agent in the dating pool randomly “meets” exactly one 
other agent also in the pool, which we shall call a “date.” At the meeting, both agents’ 
decisions are a binary choice: either “accept” or “reject” their date for marriage. If both 
agents “accept,” they marry and leave the dating pool. Otherwise (if at least one rejects), both 
go back into the pool and wait until the next time step to have another random encounter. 

2.1 Information assumptions and aggregate measures 
Agents do not have information about their own hotness level or the distribution of 

hotness in the larger system. Intuitively this means that agents don’t know exactly how they 
compare to the other agents in terms of hotness (unless some learning occurs, as explained 
below). So what information do they have? 

 In each encounter, an agent can accurately assess the hotness level of its date. It also 
knows whether it was rejected or accepted (i.e. the date’s decision). Other than the initial 
benchmark scenario explained below, we assume that agents choose to accept or reject based 
on a simple satisficing rule: they accept to marry a date only if the date’s hotness level is 
above a personal threshold. Agents are also heterogeneous in their threshold level; each 
agent is randomly given a threshold level when the model is initialized, again using a 
uniform distribution. We examine different behavioral scenarios in the next section. 
Depending on the rules used in the scenario, agents have the opportunity to update their 
thresholds. Four rule scenarios are discussed at length below. 

In order to evaluate how organized the system is, we estimate a measure of “fairness” 
(without any normative or political implication). This fairness measure is the difference in 
hotness level between agents in each married couple, which we will call the “gap.” For 
example, if an agent that is a 10 (in the hotness scale) marries a 1, this is considered to be an 
“unfair” marriage from an aggregate perspective (perhaps the agent with the lower hotness 
value would disagree!). Notice that assortative mating means that the gap across married 
agents should be low (closer to zero) as agents try to marry another with fitness levels close 
to their own. We consider that the system is more “organized” when the average gap across 
marriages is lower. 

2.2 Behavioral scenarios 

We consider different behavioral scenarios. The objective is to analyze which behavioral 
rules, if any, can lead to assortative mating. 
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1) Coin-flip: In the base scenario (benchmark), the agents’ decisions to accept or reject 
their date is made by “flipping a coin,” accepting with a 50% probability. Notice that here 
they do not take into consideration their partner’s hotness level when making the decision to 
“marry” or not. In this scenario, we expect that many agents will be inequitably paired since 
the matching is entirely randomized; hence we expect a higher average gap. Also, since all 
agents have a positive probability of being accepted, independently of the remaining agents 
in the pool, we expect all of them to get married with sufficient time steps. 

2) Fixed-threshold: The agents are assigned a random threshold value independent of 
their individual hotness levels, as described above. When meeting a date, they use this 
threshold to determine if the other agent is “hot enough” to marry. This is the decision 
satisficing rule. The threshold level remains the same in all periods. In this scenario, some 
agents that are too low on the hotness scale, that “aim too high” (i.e. have a high threshold 
value), or that are both too hot and aim too high, might end up never being matched. 

3) Updating-threshold: The agents in this version of the model have random threshold 
values to start (as in last scenario), but they update these values based only on the decision of 
their date. The updating rule is quite simple, and applies only if at least one of the agents 
rejects (i.e. if no marriage happens): if the date choses to reject, decrease the threshold by 
one point (we test other values as well, shown in the results section). If the date choses to 
accept, increase the threshold by one point. This simple updating rule reflects agents 
updating their aspiration levels based on experience; agents constantly being rejected will 
start accepting dates with lower hotness levels. The ones constantly being accepted will keep 
increasing their threshold values, accepting to marry only hotter dates. Notice that this 
updating rule reflects agents that learn from experience how high (or low) can they “aim,” or 
how “picky” can they be when selecting a partner with whom to mate. We expect in this case 
that agents will find much more equitable pairs as they have the potential to dynamically 
adjust their threshold based on their apparent value expressed through individual 
interactions. 

4) Training:  In the previous scenario, the first time step allows agents to pair without 
much information about the system. In that scenario, the first time step before an updating 
opportunity may allow agents with very disparate hotness values to pair. In this training 
scenario, agents have the opportunity to “practice” pairing by meeting others and updating 
their threshold values without committing to marrying and leaving the system. In this case, 
agents meet at each time step in the training period, but independent of the decisions, there 
are no marriages. Intuitively, this can be thought as a period of adolescence, where agents 
date before actually considering committing to marriage. In this case, the agents should 
develop a more refined sense of their own value, or at least of how high can they aim. This is 
expected to lead to more equitable matches. 

3 RESULTS 

3.1 Measures 
Two measures provide insight into the performance of agents in the system to solve the 

matching problem. First, after pairing, we record the difference in hotness levels between the 
two married agents (the gap). The gap of all married couples are averaged at the end of each 
simulation run, and then averaged across runs. Second, we record the number of time steps 
(ticks) required for the system to converge (to stop creating new marriages). In some cases, 
the convergence happens when all of the agents find a marriage partner. In other cases, 
however, not all agents find a pair, but the system stabilizes at a certain percentage of pairs. 
Perpetually unmatched agents occur when agents’ thresholds exceed the available potential 
partners’ hotness levels remaining unpaired in the model. 
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3.2 Simulation 
Each scenario was run 1,000 times using the BehaviorSpace feature of NetLogo. For the 

threshold updating/learning model, the amount an agent updates at each interaction was 
tested from one to five at increments of one, each run 1,000 times. For the training period 
model, agents were allowed training intervals of 10, 50, and 100 ticks, also run 1,000 times 
each. Tables 1-3 provide the average values for each of these scenarios over 1,000 simulation 
runs.  

Table 1: Average Equity Gap and Time Steps over 1,000 Runs 

Rule:	  	   Coin-‐flip	   Fixed	   Updating=1	   Training	  Period	  

Equity	  Gap	   3.333	   2.764	   2.265	   1.709	  

Ticks	  to	  Convergence	   16	   48	   191	   174	  

 

  

 
In Table 1, we observe the results of the simulation runs for the four different rule 

scenarios. The Coin-Flip rule converges fastest, but results in a relatively large average equity 
gap indicating that while agents found mates quickly, they are not paired very equitably. In 
the second scenario where agents have randomly assigned thresholds, they still find mates 
relatively quickly, but the average equity gap is smaller than in the Coin-Flip case. When we 
introduce learning into the model by allowing agents to update their thresholds based on the 
decision of the other agent at each meeting, the system takes much longer on average to 
converge but results in an even more average equitable pairing. Finally, we look at the 
system where agents are allowed to learn for a predetermined number of iterations before 
committing to marriage. In this case, agents find suitable mates slightly more quickly on 
average than the scenario without a training period and significantly improve the average 
equity gap between paired agents. We see here that with a very simple updating rule and 
some time for agents to attempt to learn their own ‘hotness’ value, agents tend to pair with 
others of a similar hotness value. This result confirms the occurrence of assortative mating 
as seen in the psychology and economics literature.  
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Table 2: Average Equity Gap and Time Steps over 1,000 Runs Across Different Threshold 
Updating Values 

Learning	  Values:	   1	   2	   3	   4	   5	  

Equity	  Gap	   2.265	   2.323	   2.485	   2.640	   2.800	  

Ticks	  to	  Convergence	   191	   105	   76	   58	   47	  

 

  

 
Table 2 shows the results from varying the amount that an agent updates its threshold 

after an encounter with another agent. Recall that in this scenario, the agent updates its 
threshold based on the date’s decision when they meet. If the agent was ‘accepted,’ then it 
increments its threshold by the Learning Value amount; if it was ‘rejected,’ then it decreases 
its threshold by that amount. The simulation was run 1,000 times for each of the learning 
values 1 – 5 and reported in Table 2. Notice that the results in the scenario where learning 
value is five is very close to the average gap and ticks to convergence in the random 
assignment scenario in Table 1. A high learning value causes the agent to over-correct, 
introducing a noise into the system that results in very similar average outcomes to the 
random scenario. Though it takes on average the longest to converge, the smallest learning 
value provides the best outcome in terms of equitable pairing.  
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Table 3: Average Equity Gap and Time Steps over 1,000 Runs for Different Lengths of Training 
Period 

Training	  Period:	  	   10	   50	   100	  

Equity	  Gap	   1.709	   1.705	   1.705	  

Ticks	  to	  Convergence	   164	   154	   156	  

 

  

 
One observation during the initial updating model was that the most pairing happened 

during the first few iterations. This resulted from agents pairing based on their initial, 
randomly assigned hotness values before “getting out into the world” to learn more about 
their own hotness values from interactions with others. To address this issue, we 
implemented a learning period of either 10, 50, or 100 ticks—or rounds of meeting—before 
anyone in the model begins to commit to marriage with another agent. Table 1 showed that 
this strategy improved the outcome over the other rules, but Table 2 shows very little effect 
past the training period of 10 ticks.  

Ultimately, these results indicate that assortative mating comes about through simple 
agent rules and with very little information about the broader world of agents. Particularly in 
the case where the agents were allowed even a short a warm-up period, we see that agents 
find much more equitable partnerships on average that the other scenarios. Similar results 
have appeared in other psychological studies, most recently in a paper that looked at 
assortative (Xiea, Chenga, and Zhoua, 2015). 

4 EXTENSIONS 

The model presented in this paper is very simple, with two agents meeting and staying 
together. Potential extensions for exploration might include allowing agents to divorce and 
re-enter the dating pool to find an even more suitable mate. This might allow agents to 
continue learning from interactions and result in even more equitable matches as those who 
paired very early in the system before learning about their own fitness would have a chance 
to update partners later. Another extension for future work might allow agents to develop 
and maintain a reputation that affects their mating preferences or possibilities in future 
runs. Additionally the potential for asymmetric information among agents could result in 
some interesting self-organizing dynamics within the model. In the current version of the 
model, we limit self-organizing to two agents in order to capture the behavior of couples in a 
mating environment. Future extensions might consider allowing more agents to pair 
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together, which could represent a system where agents form alliances rather than married 
couple pairs (or polygamist societies!).  

5 APPLICATIONS 

We propose here some applications of this generalized model to other contexts within the 
social sciences.  

Academia: In the world of academia, scholars attempt to publish articles in the most 
prestigious journal possible. In this case, prestige of the journal and quality of the scholarly 
article could be represented as ‘hotness’ to the other agent. The scholar and journal editor 
each have a dynamic threshold that they update based on feedback from one another. If the 
journal exceeds the author’s threshold, he will submit his article for review. If the article 
exceeds the journal editor’s threshold (setting aside peer referees for the moment), then she 
will accept the article and publish. 

Matching markets: The model can also be related to the matching market literature. 
Algorithms such as the Shapiro-Galey explore matching under different conditions. 
Environments such as the job market can be interpreted as agents trying to find the best 
match they can, without complete information of the whole distribution of candidates 
(unlike in Shapiro-Galey). As in our model, internships or pos-doc positions can be 
considered as training periods where both universities and Phd students engage in 
temporary contracts in order to learn and adapt their threshold level. Afterwards, both 
parties engage in the search of more stable matching, such as lectureships leading to tenured 
positions. 

Coalition formation: In a theoretical world where agents look to form coalitions, the 
assortative mating model may have additional applications, particularly in an extension 
where agents are allowed to pair with more than one partner. In this case, fitness levels 
determine the interest of each partner in joining the coalition. Those that are accepted 
regularly may increase their thresholds and become “pickier” about their permanent partner. 
In a model where agents are allowed to “divorce,” we may see dynamic collation formation 
where agents pair with those similar to their own fitness level similar to the dynamics seen in 
the assortative mating model.  
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